Solve an input or output oriented DEA model under constant (crs
), variable (vrs
),
non-increasing (drs
), or non-decreasing (irs
) returns to scale.
Arguments
- data
Dataset to analyse.
- input
A character vector with input variables.
- output
A character vector with output variables.
- id
Optional. A string with the DMU id or name variable. Defaults to the rownames of the dataset.
- rts
Returns to scale.
crs Constant returns to scale, convexity and free disposability. vrs Variable returns to scale, convexity and free disposability. drs Decreasing returns to scale, convexity, down-scaling and free disposability. irs Increasing returns to scale, (up-scaling, but not down-scaling), convexity and free disposability. - orientation
Model orientation.
- super
If
TRUE
super efficiency scores are calculated.- slack
If
TRUE
slack values are calculated.- peers
If
TRUE
peers are added to the response.
Examples
# Load example data
fare89 <- deaR::Electric_plants
# Estimate efficiency
mod <- compute_dea(
data = fare89,
input = c("Labor", "Fuel", "Capital"),
output = "Output",
id = "Plant",
rts = "vrs",
orientation = "in"
)
# Print results
print(mod)
#> Efficiency scores:
#> [1] 0.8691291 1.0000000 1.0000000 0.9306542 1.0000000 0.9071361 0.8909196
#> [8] 0.8207811 0.8884630 0.8469025 0.9530535 1.0000000 0.9601672 1.0000000
#> [15] 1.0000000 0.8884514 1.0000000 1.0000000 0.9440624
# Get summary
summary(mod)
#> Technology is VRS and input oriented efficiency
#> Mean efficiency: 0.9421
#> -----------
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 0.8208 0.8897 0.9531 0.9421 1.0000 1.0000
# Convert to data frame
df <- as.data.frame(mod)